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Executive summary  

Nowadays, the prevalence of electronic and computing systems in our lives is so ubiquitous that it would not 

be far-fetched to state that we live in a cyber-physical world dominated by computer systems. Examples 

include pacemakers implanted within the human body, cars and airplanes transporting us, smart grids and 

traffic management. All these systems demand more and more computational performance to process large 

amounts of data from multiple sources, some of them with processing times requirements. In other words, 

systems are required to deliver performance within pre-defined (and sometimes extremely short) time 

bounds. This timing aspect is vital for systems like planes, cars, business monitoring, e-trading, etc.  

As a result of these requirements, the computer electronic devices to which these systems depend on are 

constantly required to become more and more powerful and reliable, while remaining affordable. To cope 

with such performance requirements, chip designers have recently started producing chips containing 

multiple processing units, the so called multi-core processors, effectively integrating multiple computers 

within a single chip. This radical shift in the chip design paved the way for parallel computing: rather than 

processing the data sequentially, the cooperation of multiple processing elements within the same chip 

allowed systems to be executed concurrently, in parallel. 

Unfortunately, the parallelization of the computing activities brought upfront many challenges, because it 

affects the timing behaviour of systems, as well as the entire way people think and the design computers, 

from the design of the hardware architecture, through the operating system up to the end-user application. 

Although multi-core processors are promising candidates to improve the responsiveness of these systems, 

the interactions that the different computing elements may have within the chip, can seriously affect the 

performance opportunities brought by parallel execution. Moreover, providing timing guarantees becomes 

harder, because the timing behaviour of the system running within a multi-core processor depends on 

interactions that are most of the time not know by the system designer. This makes system analysts to be 

struggled trying to provide timing guarantees for such platforms. Finally, most of the optimization 

mechanisms buried deep inside the chip are geared only to increase performance and execution speed 

rather than providing predictable time behaviour. 

The aim of P-SOCRATES was thus to allow applications with high-performance and real-time requirements to 

fully exploit the huge performance opportunities brought by the most advanced many-core processors, 

whilst ensuring a predictable performance and maintaining (or even reducing) development costs of 

applications. This was achieved by developing a new methodology, and a set of tools, integrated in the 

UpScale SDK. Industrial companies benefit from the project outcomes, allowing European technology 

suppliers to properly exploit the capabilities of next-generation hardware platforms in a predictable way. 

Impacts are foreseen in the development of technologies for both the high-performance and embedded 

computing domains.  

From an applicative point of view, P-SOCRATES represents a reference point for the implementation of real-

time complex event-processing systems, and, more in general, of workload-intensive applications with time-

criticality requirements, enabling a more efficient smart society. The computing technology developed in the 

project was evaluated on real-world use-cases, such as a complex event processing engine, an embedded 

sensor processing system and an online semantic intelligence tool. The technology also allows a deeper 

understanding of many-core off-the-shelf systems, enabling new kinds of applications to be developed on 

top of these platforms.  
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1 Project context and objectives  

High performance computing has been for a long time the realm of a specific community within academia 

and specialised industries; in particular those targeting demanding analytics and simulations applications 

that require processing massive amounts of data. In a similar way, embedded computing has also focused 

mainly on specific systems with specialised and fixed functionalities and for which timing requirements were 

considered as much more important than performance requirements. However, with the ever-increasing 

availability of more powerful processing platforms, alongside affordable and scalable software solutions, 

both high-performance and embedded computing are extending to other sectors and application domains.  

The demand for increased computational performance is currently widespread and is even more challenging 

when large amounts of data need to be processed, from multiple data sources, with guaranteed processing 

response times. Although many systems focus on performance and handling large volumes of streaming data 

(with throughput and latency requirements), many application domains require real-time behaviour and 

challenge the computing capability of current technology. Some examples are: 

• In cyber-physical systems, ranging from automotive and aircrafts, to smart grids and traffic management, 

computing systems are embedded in a physical environment and their behaviour obeys technical rules 

dictated by this environment. Typically, they have to cope with the timing requirements imposed by the 

embedding domain. In the Large Hadron Collider (LHC) in CERN, beam collisions occur every 25ns, which 

produces up to 40 million events per second. All these events are pipelined with the objective of 

distinguishing between interesting and non-interesting events to reduce the number of events to be 

processed to a few hundreds. Similarly, bridges are monitored in real-time with information collected 

from more than 10,000 sensors processed every 8ms, managing responses to natural disasters, 

maintaining bridge structure, and estimating the extent of structural fatigue. Another interesting 

application is in intelligent transportation systems, where systems are developed to allow for fuel 

consumption reduction of railway systems, managing throttle positions, elaborating big amounts of data 

and sensor information, such as train horsepower, weight, prevailing wind, weather, traffic, etc.  

• In the banking/financial markets computing systems process large amounts of real-time stock 

information in order to detect time-dependent patterns, automatically triggering operations in a very 

specific and tight timeframe when some pre-defined patterns occur. Automated algorithmic trading 

programs now buy and sell millions of dollars of shares time-sliced into orders separated by 1ms. 

Reducing the latency by 1 ms can be worth up to $100 million a year to a leading trading house. The aim 

is to cut microseconds off the latency in which these systems can reach to momentary variations in share 

prices. 

• In industry, computing systems monitor business processes based on the capability to understand and 

process real-time sensor data from the factory-floor and throughout the whole value chain, with Radio 

Frequency Identification (RFID) components in order to optimise both the production and logistics 

processes. 

The underlying commonality of the systems described above is that they are time-critical (whether business-

critical or mission-critical, it is necessary to fulfil specific timing requirements) and with high-performance 

requirements. In other words, for such systems, the correctness of the result is dependent on both 

performance and timing requirements, and the failure to meet those is critical to the functioning of the 

system. In this context, it is essential to guarantee the timing predictability of the performed computations, 
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meaning that arguments and analysis are needed to be able to make arguments of correctness, e.g. 

performing the required computations within well-specified bounds. 

Until now, trends in high-performance and embedded computing domains have been running in opposite 

directions. On one side, high-performance systems (HPC) are traditionally designed to make the common 

case as fast as possible, without concerning themselves for the timing behaviour (in terms of execution time) 

of the not-so-often-cases. As a result, the techniques developed for HPC are based on complex hardware and 

software structures that make any reliable timing bound almost impossible to derive. On the other side, real-

time embedded systems are typically designed to provide energy-efficient and predictable solutions, without 

heavy performance requirements. Instead of fast response times, they aim at having deterministically 

bounded response times, in order to guarantee that deadlines are met. For this reason, these systems are 

typically based on simple hardware architectures, using fixed-function hardware accelerators that are 

strongly coupled with the application domain.  

The needs for energy-efficiency and for flexibility, coming along with Moore’s law greedy demand for 

performance and the advancements in the semiconductor technology, have progressively paved the way for 

the introduction of “many-core” systems, i.e., computing chips containing a high number of cores (tens to 

hundreds) in both domains. The introduction of many-core systems has set up an interesting trend wherein 

both the HPC and the real-time embedded domain converge towards similar objectives and requirements. 

Many-core computing fabrics are being integrated together with general-purpose multi-core processors to 

provide a heterogeneous architectural harness that eases the integration of previously hardwired 

accelerators into more flexible software solutions. 

Manycore processor architectures allow these performance requirements to be achieved, by integrating 

dozens or hundreds of cores, interconnected with complex networks on chip, paving the way for parallel 

computing. Unfortunately, parallelization brings many challenges, by drastically affecting the system’s timing 

behavior: providing guarantees becomes harder, because the behavior of the system running on a multicore 

processor depends on interactions that are usually not known by the system designer. This causes system 

analysts to struggle to provide timing guarantees for such platforms. 

 
Figure 1 – P-SOCRATES Global perspective 

The aim of P-SOCRATES was thus to allow the current and future applications with high-performance and 

real-time requirements to fully exploit the huge performance opportunities brought by the most advanced 

Commercial Off-the-Shelf (COTS) many-core embedded processors, whilst ensuring a predictable 

performance and maintaining (or even reducing) development costs of applications (Figure 1).  
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To do so, P-SOCRATES focused on combining techniques from different domains: the newest high-

performance software techniques for exploiting task parallelism, the most advanced mapping and 

scheduling methodologies and timing and schedulability analysis techniques used in real-time embedded 

systems, and the low-energy many-core platforms of the embedded domain. This allowed taking important 

steps towards the convergence of high-performance computing (HPC) and real-time and embedded domains 

(Figure 2), providing predictable performance to HPC systems and increasing performance of real-time 

embedded systems. 

 

Figure 2 – P-SOCRATES combines high-performance parallel programming models, high-end embedded 
many-core platforms and real-time systems technology. 

 
The work in the project was guided having in mind a set of strategic goals. First, the time-criticality 

requirements of applications from both high-performance computing and real-time embedded domains are 

to be guaranteed by ensuring time predictability through the whole design stack. Such guarantees allow to 

provide high-performance capabilities within analytically-derived response-time bounds. A second goal was 

to provide parallelisation on top of COTS many-core high-end embedded processors, still fulfilling time-

critical requirements. By combining parallel programming models of high-performance computing with the 

real-time technology of embedded systems, the parallel execution of workload-intensive applications with 

critical timing requirements is applied on Off-The-Shelf many-cores embedded processors. Finally, the whole 

technology developed within the project was designed towards facilitating the production of efficient high-

performance computing and embedded systems with requirements in performance and time predictability. 

In particular, reducing the complexity of parallel programming in embedded applications was of paramount 

importance. 

Considering these goals, P-SOCRATES had the following detailed objectives: 

▪ Develop a parallel programming model capable of expressing data dependencies and real-time 

application properties.  

Parallel programming models currently used in HPC is extended to contain relevant information about 

the impact of executing simultaneous parallel task. Such information is contained in an extended task 

dependency graph automatically generated by the compiler. The extended task dependency graph 

allows decoupling the application parallelism from the actual mapping of execution in the underlying 

platform, in order to facilitate the porting of applications to multiple many-core platforms.  
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▪ Develop resource-aware mapping and scheduling algorithms that are able to predictably schedule 

multiple resources in the system (CPU, interconnect, memory).  

These algorithms consider the information on parallelism, data-dependencies, and timing properties in 

the programming model, in order to allocate parallel tasks to cores and for scheduling their execution 

and access to interconnection networks, memories and other resources. 

▪ Develop a timing analysis methodology capable of expressing the timing implications of data-

dependencies and potential resource-contentions of task-to-core mappings.  

Analyse the different interfering sources (higher priority workload, network contention, memory 

bottlenecks, etc.) that might affect the execution of a task, providing upper bounds on the response 

times of each task. This information influences the selection of the scheduling algorithms to allow for 

predictable systems, lending themselves to a tighter schedulability analysis and a simplified computation 

of worst-case timing parameters. This timing analysis considers the extended task dependency graph 

provided by the compiler and the hardware platform. 

▪ Identify specific hardware recommendations to improve the predictability of current COTS many-core 

embedded processor designs.  

Current many-core embedded processors are designed to provide high throughputs for multiple types of 

workloads, as well as to accelerate computationally intensive algorithms for various application domains. 

The project provides a set of recommendations to improve platform predictability and decrease timing 

bounds without affecting the average-case behaviour of the platform.  

▪ Integrate the proposed techniques on real world use-case applications, increasing performance, while 

providing trustworthy real-time bounds, on a COTS many-core embedded platform.  

One of the main targets of the project was to prove that it is possible to implement real-time HPC 

systems on next-generation many-core embedded platforms, without sacrificing performance. For this 

purpose, the implementation of real-work applications characterised by a heavy workload with real-time 

requirements was provided on a COTS many-core platform, providing analytical bounds on response-

time parameters. 

▪ Contribute to Open Source software.  

The developed software framework was made publicly available under Open Source licenses at the end 

of the P-SOCRATES project. 
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2 Main S&T results  

P-SOCRATES developed a complete and coherent software system stack, able to bridge the gap between the 

application design with both high-performance and real-time requirements, and the hardware platform, in 

our case a many-core embedded processor. The project provided a new framework to combine real-time 

embedded mapping and scheduling techniques with high-performance parallel programming models and 

associated tools, able to express parallelisation of applications. The programming model used was based on 

the state-of-the-art OpenMP specification.  

 

 

Figure 3 – Vertical stack of application decomposition 
 

The software stack (shown in Figure 3) is able to extract a task dependency graph from the application, 

statically or dynamically mapping these tasks to the threads of the operating system, which then dynamically 

schedules them on the many-core platform. The main scientific and technology advances provided are 

described in the following subsections. 

2.1 Compiler Analysis of Parallel Programs 
P-SOCRATES developed a compilation framework with a twofold objective: (1) To extract all information 

needed to derive timing and schedulability analysis of OpenMP programs, and (2) facilitate the 

programmability of the many-core architecture, by supporting the OpenMP acceleration model. Next we 

briefly summarise both achievements. 

The P-SOCRATES compilation framework, based on the source-to-source compiler Mercurium developed at 

BSC, incorporates a novel compiler analysis phase capable of extracting all control-flow and data-flow 

information needed to analyse the timing behaviour of OpenMP programs. This analysis phase is composed 

of two stages: In the first stage, the parallel control flow graph (PFCG) is extracted, the induction variables 

involved in loops and conditionals containing OpenMP tasks are identified, and a complete range analysis is 
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performed to determine the value of each program variable impacting on the parallel structure of the 

program. In the second stage, the control flow structures are resolved and expanded, identifying those 

OpenMP tasks that are instantiated and the data dependencies existing among them. This analysis generates 

a direct acyclic graph (DAG) or task dependency graph (TDG), which incorporates all possible OpenMP tasks 

and run after dependencies existing among them, generated at deployment time. 

The P-SOCRATES compiler also incorporates a source-code lowering phase, that transforms a subset of 

OpenMP directives coded into the application (those implementing the tasking and acceleration model), to 

the corresponding API implemented in P-SOCRATES run-time libraries, i.e. libpsocoffload, which implements 

the offloading mechanisms between IO cores and computing clusters, and libpsocomp, which implements 

the OpenMP tasking model.  

Overall, the P-SOCRATES compilation process is completely automatic and transparent to the developer, so 

the compilation framework invokes the corresponding compiler to generate the binaries executing on the IO 

cores and computing clusters, linking all together in a unique binary. 

Finally, P-SOCRATES investigated the compiler support needed to guarantee functional safety of OpenMP 

programs, identifying the techniques needed to guarantee that the parallel execution is free of errors such 

as race-conditions or dead-locks. This is a fundamental step to incorporate parallel programming into safety-

critical real-time systems. 

2.2 Predictable Scheduling of Parallel Tasks on Many-core Systems 
The P-SOCRATES project provided substantial advances in the real-time scheduling and schedulability 

analysis of parallel graphs.  In a first phase, the work focused on providing an approach based on mapping 

parallel tasks to threads and these to cores, with no migration support. Subsequently, P-SOCRATES analysed 

possible strategies to schedule parallel tasks considering thread migration among processors.  

As a result, and as set forth in the project goals, P-SOCRATES developed an overall schedulability analysis of 

parallel real-time systems. The analysis is based on the computation of the worst-case response time of real-

time tasks concurrently executing on a given cluster of cores. The results of the project provided novel 

techniques and analysis for two different approaches, depending on the mapping/scheduling mechanisms 

supported by the framework: (i) a dynamic solution based on a global scheduler allowing a work-conserving 

behaviour, and (ii) a fully static solution based on a partitioned scheduler and a fixed task-to-thread 

mapping. The analysis is complemented with a software module to be used by the mapping algorithms to 

verify the response times of particular mappings, integrated in the UpScale SDK. 

An important aspect to note is the research performed by the project, where for the first time a parallel task 

model used for real-time schedulability analysis has been enriched with control-flow information, thus 

effectively taking into consideration the problem of conditional branches potentially creating different sub-

graphs. This led to the new real-time model of conditional parallel graphs, advancing the state of the art in 

the domain. In parallel, extensive work was performed on the schedulability analysis of the OpenMP tasking 

execution models (tied and untied), showing how to provide predictability guarantees for applications 

parallelised with these models.  

2.3 Methodology for measurement-based timing analysis 
In the first phase pf the project, the partners have deeply investigated and summarized the currently-

available methods to timing analysis. After weighing the pros and cons of each technique, the project 
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concluded that a new technique based on runtime measurements would suit best the project objectives in 

terms of flexibility of the proposed solution, its development effort and cost and its adaptation to new 

hardware platforms.  

The project thus focused on the design and development of that new measurement-based technique. The 

methodology includes the following main steps: configuration and compilation of the target application on 

the platform; configuration of the execution conditions in which the target application is to be timed; 

execution and timing of the application; collection and post-processing of the timed traces; extraction of the 

worst-case timing estimates; report generation and feedback to the designer. The methodology is based on 

executing all those steps several times using different execution conditions. It then reports on the variability 

in the timing behaviour of the application under these conditions and thus on its sensitivity to the external 

events that may influence those conditions. 

The timing tool has been fully integrated with the compiler, the mapper, and the schedulability analysis tool 

designed in the project to create the UpScale SDK. This single higher-level and fully-automated process is not 

only able to analyse the timing behaviour of the target application using the SDK, but also it is able to setup 

the scheduling algorithm and mapping tool so that the system is automatically configured to satisfy all the 

application timing requirements. 

One of the project outcome is a thus fully operational, implemented, and tested methodology and tool to 

capture the timing properties of the target application and derive estimations of its maximum execution 

requirement. 

2.4 Optimized OpenMP Tasking Runtime System 
The P-SOCRATES methodology entirely relies on the parallel computing abstraction provided by the OpenMP 

tasking model, and its conceptual similarities to the DAG model, to achieve predictable task scheduling. 

Task-based parallelism has historically provided a powerful conceptual framework to exploit massive and 

irregular parallelism in target applications from the high-performance computing (HPC) domain. However, a 

space- and performance-efficient design of a tasking run-time environment (RTE) targeting a many-core 

system-on-chip is a challenging task, as embedded parallel applications typically exhibit very fine-grained 

parallelism. The applicability of the tasking approach to embedded applications and embedded many-core 

accelerators is often limited to coarse-grained parallel tasks, capable of tolerating the high overheads 

typically implied in a tasking RTE. 

Before P-SOCRATES, existing tasking RTEs for embedded many-cores could only accelerate fine-grained 

parallelism for very simple patterns (all the parallel tasks are created from the same root node), as they all 

support only tied tasks. The consequences of this limitation are numerous. 

First, as tied tasks cannot migrate between threads, it is impossible to implement work-conserving 

schedulers, which severely constrains the schedulability analysis. Second, tied tasks imply significant 

speedup reduction compared to untied tasks when more realistic parallel execution patterns are considered 

(e.g., recursion).  

Third, tied tasks limit the available scheduling policies. In particular, work-first scheduling (WFS) – which is 

usually preferred for a better cache behaviour than others – leads to fully sequential execution in presence 

of tied tasks. 



P-SOCRATES 
 Summary Report FP7-ICT-611016 

 

 11 

P-SOCRATES succeeded in developing an OpenMP tasking RTE that fully supports untied tasks with very low 

time and space overheads. This has been achieved by means of tightly integrated operation with the 

operating system APIs. While the official project SDK (which has been made available through the UpScale 

initiative) targets the Kalray MPPA 256 SoC, we have demonstrated that its adoption onto a different 

heterogeneous many-core only requires small additional effort. 

2.5 Real-time Operating Systems 
P-SOCRATES has successfully tackled the challenge of creating an efficient Real-Time Operating System 

(RTOS) for many-core architectures. The ERIKA Enterprise RTOS provided by partner Evidence has gone 

under a complete re-design and re-development of the internal data structures and run-time mechanisms 

aiming at an efficient execution on this kind of platforms. The new version of the RTOS (informally called 

“ERIKA3”) allows to share a single binary kernel image across several cores of the platform, reducing the 

overall memory consumption.  It is worth to underline that, unlike most existing efforts for creating a RTOS 

for many-core architectures born in academia or research centres (e.g., Akaros, Barrelfish, Corey, etc.), P-

SOCRATES has chosen to build an industrial-grade product using a RTOS already certified and used by well-

known companies operating in the automotive (e.g., Magneti Marelli, Vodafone automotive, Aprilia) and 

household appliances (e.g., Honeywell) markets. 

The validity of the approach as well as the correctness of the implementation has been proved in the course 

of the project through the porting on the reference Kalray MPPA platform and the execution of very 

different use-cases. At the same time, some basic benchmarks have allowed to prove a performance boost 

against the state-of-the-art of the operating system on this platform (i.e., NodeOS). The huge work and the 

excellent results achieved in the P-SOCRATES project have naturally triggered the interest of the many-core 

chip manufacturer (i.e., Kalray). 

The preliminary release of the new RTOS version has been made freely available within the UpScale SDK. 

Given the interest of the industry (e.g., Magneti Marelli) for such a multi-core industrial-grade RTOS, the new 

version of the RTOS will be ported on several other platforms (e.g., Infineon Tricore, ARM Cortex-A and 

Cortex-R) in the course of 2017.  

The P-SOCRATES project has also investigated the concurrent execution of different operating systems (i.e., 

“Multi-OS” approach) by mixing the Linux operating system and the ERIKA Enterprise RTOS on the same 

reference MPPA platform. This activity has allowed the consortium to investigate issues, challenges and 

techniques, especially related to CPU/memory scheduling, real-time performance and communication 

between different operating systems. This activity is in turn paving the way to a paradigm shift where multi-

criticality and security issues get solved at the low operating system level. A part of the consortium is 

therefore already investigating potential approaches and techniques to mix these operating systems on 

ARM-based architectures. Some of these techniques will be shown at the Embedded World exhibition in 

Nuremberg on March 2017, where the new version of ERIKA Enterprise will be officially announced as well. 

We can conclude that, concerning the operating system, the P-SOCRATES consortium has successfully met, 

and even overtaken, its initial goals. The work started by the project will continue to evolve in the next years 

through the new version of the ERIKA Enterprise RTOS and the exploration of further approaches and 

techniques for mixing different operating systems. Last, but not least, the project has contributed to 

strengthening the European position on research and development of embedded real-time operating 

systems. 
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2.6 Architectural evolutions for Improved Programmability and Predictability 
During the development of the P-SOCRATES framework we were able to identify a number of features of the 

Kalray MPPA hardware that potentially constitute a bottleneck to the programmability, the performance or 

the predictability of the deployed applications. Among such features, we especially focused on a few major 

ones. 

First, the lack of shared-memory-based communication between host and accelerator. As it is widely 

acknowledged that memory management is one of the key difficulties in heterogeneous systems 

programming, virtually all heterogeneous systems vendors are increasingly tackling this issue by 

implementing unified virtual memory (UVM): main DRAM is physically shared between host and accelerator 

processor, and memory sharing is simplified at the program level by abstracting virtual-to-physical address 

translation through a IOMMU. 

Second, the use of non-coherent L1 caches in the accelerator fabric, which not only puts on the programmer 

the burden of managing data consistency but also implies significant performance overheads. The use of a 

cache, in general, might also hamper predictability;  

The P-SOCRATES project has investigated the exploration of extensions or evolutions of the Kalray hardware 

and current software platform to improve performance, scalability, timing predictability and application 

deployment, beyond what is possible today. 

To this aim, a new emulation platform has been developed, based on the integration of a commodity Xilinx 

Zynq platform, providing an ARM host system plus (limited) FPGA resources, and a large Kintex 7 UltraScale 

FPGA platform. The FPGA has been used to explore architectural alternatives to what is provided by the 

target platform of the PSOCRATES project, the Kalray MPPA 256 and to develop associated SW strategies in a 

manner which is very close to real HW.  

The practical outcome of this exploratory task has been a set of HW/SW techniques (generalized as 

"recommendations") to improve the performance and predictability of the baseline platform. 

2.7 The Upscale SDK 
P-SOCRATES thus provides a complete and coherent software framework for applications with high-

performance and real-time requirements in COTS many-cores embedded processors. This software 

framework is publicly released and a community is being created under the brand of the UpScale SDK 

(Software Development Kit). The UpScale SDK includes the tools to manage the application compilation 

process, its timing analysis and its execution (Figure 4): 

• Compiler flow. This flow has a twofold objective: (i) to guide the process to generate the binary that 

will execute on the many-core architecture and (ii) to generate the application Direct Acyclic Graph 

(DAG) used for the timing analysis and run-time components. 

• Analysis flow. This flow is in charge of deriving timing guarantees of the parallel execution 

considering execution time traces of the application running on the many-core platform and 

incorporated in the DAG. Timing guarantees are derived by means of execution time bounds and 

static scheduler or dynamic scheduler supported with response time analysis. 

• Execution stack. These two components are in charge of orchestrating the parallel execution of the 

application in a time predictable manner, based on the DAG. 
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Figure 4 – The UpScale SDK 
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